Electric-field switching of polar displacements in a newly predicted polar metal

Yue-Wen Fang¹*, Hanghui Chen²†

¹Department of Materials Science and Engineering, Kyoto University, Kyoto, Japan

²NYU-ECNU Institute of Physics, New York University Shanghai, Shanghai, China

*E-mail: fyuewen@gmail.com; fang.yuewen.7z@kyoto-u.ac.jp

†E-mail: hanghui.chen@nyu.edu

Polar metals--analogy of ferroelectrics in metals--are characterized by intrinsic conduction and inversion symmetry breaking. Polar metals are rare (especially in oxides) because mobile electrons screen electric fields in a metal and eliminate internal dipoles that are needed to break inversion symmetry. The discovery of LiOsO₃ [1], a metal that transforms from a centrosymmetric *R-3c* structure to a polar *R3c* structure at 140 K, has stimulated an active search for new polar metals in both theory and experiment.

In our study [2], we combine first-principles calculations and crystal structure search method to predict a new polar metal and demonstrate 180° electric-field switching of its polar displacements. Utilizing lone-pair electrons and different valences of Bi and Pb, ordered BiPbTi₂O₆ can crystallize in three polar and conducting structures, each of which can be transformed to another via pressure or strain. In a heterostructure of layered BiPbTi₂O₆ and PbTiO₃, a strong interfacial coupling enables electric fields to first switch PbTiO₃ polarization and subsequently drive a 180° change of BiPbTi₂O₆ polar displacements. Our work demonstrates the power of high-throughput screening in designing new functional materials and in particular predicts a new electrically switchable polar metal.

References:

- 1. Y. Shi, Y. Guo, X. Wang, A. J. Princep, D. Khalyavin, P. Manuel, Y. Michiue, A. Sato, K. Tsuda, S. Yu, et al., "A ferroelectric-like structural transition in a metal", *Nat. Mater.*, 12, 1024 (2013).
- 2. Y.-W. Fang, H. Chen, "Electric-field switching of polar displacements in a newly designed polar metal", *under review*, arXiv preprint:1901.08771 (2019).

ABSTRACTS 1